移动学习网 导航

支持向量机(SVM)中的参数C和gamma代表什么含义呢? 什么是支持向量机(SVM)以及它的用途?

2024-04-27m.verywind.com
libsvm支持向量机C-SVM和NU-Svm的区别~

  SVM有如下主要几个特点:
  (1)非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射;
  (2)对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心;
  (3)支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量。
  (4)SVM 是一种有坚实理论基础的新颖的小样本学习方法。它基本上不涉及概率测度及大数定律等,因此不同于现有的统计方法。从本质上看,它避开了从归纳到演绎的传统过程,实现了高效的从训练样本到预报样本的“转导推理”,大大简化了通常的分类和回归等问题。
  (5)SVM 的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”。
  (6)少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒”性。这种“鲁棒”性主要体现在:
  ①增、删非支持向量样本对模型没有影响;
  ②支持向量样本集具有一定的鲁棒性;
  ③有些成功的应用中,SVM 方法对核的选取不敏感
  两个不足:
  (1) SVM算法对大规模训练样本难以实施
  由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间。针对以上问题的主要改进有有J.Platt的SMO算法、T.Joachims的SVM、C.J.C.Burges等的PCGC、张学工的CSVM以及O.L.Mangasarian等的SOR算法
  (2) 用SVM解决多分类问题存在困难
  经典的支持向量机算法只给出了二类分类的算法,而在数据挖掘的实际应用中,一般要解决多类的分类问题。可以通过多个二类支持向量机的组合来解决。主要有一对多组合模式、一对一组合模式和SVM决策树;再就是通过构造多个分类器的组合来解决。主要原理是克服SVM固有的缺点,结合其他算法的优势,解决多类问题的分类精度。如:与粗集理论结合,形成一种优势互补的多类问题的组合分类器。

SVM - support vector machine, 俗称支持向量机,为一种supervised learning算法,属于classification的范畴。在数据挖掘的应用中,与unsupervised的Clustering相对应和区别。
广泛应用于机器学习(Machine Learning), 计算机视觉(Computer Vision) 和数据挖掘(Data Mining)当中。
假设要通过三八线把实心圈和空心圈分成两类,那么有无数多条线可以完成这个任务。在SVM中,寻找一条最优的分界线使得它到两边的margin都最大。

扩展资料:
SVM 的优点
1、高维度:SVM 可以高效的处理高维度特征空间的分类问题。这在实际应用中意义深远。比如,在文章分类问题中,单词或是词组组成了特征空间,特征空间的维度高达 10 的 6 次方以上。
2、节省内存:尽管训练样本点可能有很多,但 SVM 做决策时,仅仅依赖有限个样本(即支持向量),因此计算机内存仅仅需要储存这些支持向量。这大大降低了内存占用率。
3、应用广泛:实际应用中的分类问题往往需要非线性的决策边界。通过灵活运用核函数,SVM 可以容易的生成不同的非线性决策边界,这保证它在不同问题上都可以有出色的表现(当然,对于不同的问题,如何选择最适合的核函数是一个需要使用者解决的问题)。
参考资料来源:百度百科-支持向量机

C是惩罚系数,理解为调节优化方向中两个指标(间隔大小,分类准确度)偏好的权重,即对误差的宽容度,C越高,说明越不能容忍出现误差,容易过拟合,C越小,容易欠拟合,C过大或过小,泛化能力变差。

gamma是选择RBF函数作为kernel后,该函数自带的一个参数。隐含地决定了数据映射到新的特征空间后的分布,gamma越大,支持向量越少,gamma值越小,支持向量越多。支持向量的个数影响训练与预测的速度。

扩展资料:

1、支持向量机(Support Vector Machine, SVM)是一类按监督学习方式对数据进行二元分类的广义线性分类器其决策边界是对学习样本求解的最大边距超平面。

2、SVM使用铰链损失函数计算经验风险并在求解系统中加入了正则化项以优化结构风险,是一个具有稀疏性和稳健性的分类器。SVM可以通过核方法进行非线性分类,是常见的核学习方法之一。



C是惩罚系数
就是说你对误差的宽容度
这个值越高,说明你越不能容忍出现误差

gamma是你选择径向基函数作为kernel后,该函数自带的一个参数。隐含地决定了数据映射到新的特征空间后的分布。

支持向量机SVM ( Support Vector Machines)是由Vanpik领导的AT&TBell实验室研究小组
在1963年提出的一种新的非常有潜力的分类技术, SVM是一种基于统计学习理论的模式识别方法,主要应用于模式识别领域.由于当时这些研究尚不十分完善,在解决模式识别问题中往往趋于保守,且数学上比较艰涩,因此这些研究一直没有得到充的重视.直到90年代,一个较完善的理论体系—统计学习理论 ( StatisticalLearningTheory,简称SLT) 的实现和由于神经网络等较新兴的机器学习方法的研究遇到一些重要的困难,比如如何确定网络结构的问题、过学习与欠学习问题、局部极小点问题等,使得SVM迅速发展和完善,在解决小样本 、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中.从此迅速的发展起来,现在已经在许多领域(生物信息学,文本和手写识别等)都取得了成功的应用。
SVM的关键在于核函数,这也是最喜人的地方。低维空间向量集通常难于划分,解决的方法是将它们映射到高维空间。但这个办法带来的困难就是计算复杂度的增加,而核函数正好巧妙地解决了这个问题。也就是说,只要选用适当的核函数,我们就可以得到高维空间的分类函数。在SVM理论中,采用不同的核函数将导致不同的SVM算法

它是一种以统计学理论为基础的,以结构风险最小化的学习机学习方法,要优于神经网络学习,以上是摘自本人的毕业设计,如需转载,请通知本人


  • 支持向量机(SVM)中的参数C和gamma代表什么含义呢?
  • 答:C是惩罚系数,理解为调节优化方向中两个指标(间隔大小,分类准确度)偏好的权重,即对误差的宽容度,C越高,说明越不能容忍出现误差,容易过拟合,C越小,容易欠拟合,C过大或过小,泛化能力变差。gamma是选择RBF函数作为ke...

  • 支持向量机(SVM)中的参数C和gamma代表什么含义呢?
  • 答:C惩罚系数 说对误差宽容度 值越高说明越能容忍出现误差 gamma选择径向基函数作kernel该函数自带参数隐含地决定了数据映射新特征空间分布

  • 参数的选择
  • 答:在支持向量机方法中,要选择的参数主要有惩罚系数C、核函数参数g和不敏感损失函数参数ε。对于C和核函数参数g的选择可采用交叉验证(crossvalidation)和网格搜索(gride searching)方法,这样可以选择符合实际情况的最优参数。...

  • SVM中的c和g是哪个公式里的?
  • 答:c是惩罚系数,g是核函数半径

  • 数据挖掘-支持向量机
  • 答:支持向量机(support vector machine,SVM)是一种出色的分类技术,也可以用于回归分析(SVR)。这种技术可以很好的应用于高维数据,避免维度灾难等问题。 SVM有一个特点就是使用训练集中的一个子集来表示决策边界,该子集称作 支持向量。 SVM的...

  • SVM常考细节
  • 答:SVM是一种二类分类模型。它的基本模型是在特征空间中寻找间隔最大化的分离超平面的线性分类器。(间隔最大是它有别于感知机)(1)当训练样本线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机;...

  • 第6章 支持向量机
  • 答:两个异类支持向量到超平面的距离之和( 间隔 )为: “ 最大间隔 ”的划分超平面条件:满足式(6.3)中对参数w和b,使得 最大,即: 可改写为(支持向量机 SVM的基本型 ): 对 凸二次规划 问题使用 拉格朗日乘子法 可得到对偶问题,具体...

  • 机器学习的超参数是什么
  • 答:自从接触了机器学习后,在很多地方如书籍和文献中经常会看到有一类参数叫超参数(hyperparameter),其中提超参数最多的地方是在支持向量机(SVM)和深度学习(Deep Learning)中,比如支持向量机中的松弛因子:上式中的C就是...

  • svm方法缺点
  • 答:1.核支持向量机是非常强大的模型,在各种数据集上的表现都很好。svm允许决策边界很复杂,即使数据只有几个特征。它在低维数据和高维数据(即很少特征和很多特征)上都表现都很好,但对样本个数的缩放表现不好。在有多达10000...

  • 支持向量机(SVM)基本原理
  • 答:支持向量机 ,因其英文名为support vector machine,故一般简称SVM,通俗来讲,它是一种二类分类模型,其基本模型定义为 特征空间 上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。 线性分类器...

    户户网菜鸟学习
    联系邮箱
    返回顶部
    移动学习网